4.1. General
Metallurgy is above all the science of alloying. From the big three: iron, copper and aluminium, and perhaps twenty other elements which are also household names, it is possible to generate more or less the complete range of alloys in common use. Of course, the interaction between pairs, or larger numbers, of elements is described, as a function of temperature and compositions, by a phase diagram. The understanding of these diagrams is as mother's milk to a metallurgist, and their importance cannot be questioned.
Phase diagrams do exist in polymer science, but their significance is not pre-eminent, and there are many involved with polymeric materials who can ply their trade without ever having to encounter one. Why the difference?
In the first instance, the number of polymers which can be envisaged and synthesised is semi-infinite. There is a huge number of ways in which carbon, oxygen, nitrogen and hydrogen atoms can be put together to make different chains or networks. So it could be argued that instead of trying to mix different types of chains to make materials with different properties, the polymer chemist merely dreams up and synthesises another molecule. There may be something in this view; however the central reason why polymer alloys are not centre stage is that they are reluctant to form solutions or compounds with each other. They simply do not alloy very well.
The word ‘alloy’ is not used by the polymer scientist (this chapter excepted). The closest equivalent is blend. In general, solid solutions of polymers are referred to as miscible blends while two-phase mixtures where there is effectively no terminal or liquid–liquid solubility, such as in the copper-lead system, are referred to as immiscible blends.